A NOTE ON ORDERED BELL NUMBERS AND POLYNOMIALS.

TAEKYUN KIM

ABSTRACT. In this paper, we study ordered Bell numbers and polynomials and we give some new identities of these numbers and polynomials arising from umbral calculus.

1. Introduction

The ordered Bell numbers are defined by the generating function to be

$$\frac{1}{2 - e^t} = \sum_{n=0}^{\infty} b_n \frac{t^n}{n!}, \quad (\text{see } [1, 2]). \tag{1.1}$$

Now, we consider the ordered Bell polynomials which are given by the generating function to be

$$\frac{1}{2 - e^t} e^{xt} = \sum_{n=0}^{\infty} b_n(x) \frac{t^n}{n!}, \quad \text{(see [7])}.$$

Note that

$$\sum_{n=0}^{\infty} b_n(x) \frac{t^n}{n!} = \frac{1}{2 - e^t} e^{xt} = \sum_{n=0}^{\infty} \left(\sum_{l=0}^n \binom{n}{l} b_{n-l} x^l \right) \frac{t^n}{n!}.$$
 (1.3)

By (1.3), we get

$$b_n(x) = \sum_{l=0}^n \binom{n}{l} b_l x^{n-l} = \sum_{l=0}^n \binom{n}{l} b_{n-l} x^l, \quad (n \ge 0).$$
 (1.4)

Let

$$\mathcal{F} = \left\{ f(t) = \sum_{k=0}^{\infty} a_k \frac{t^k}{k!} \, \middle| \, a_k \in \mathbb{C} \right\}$$

2010 Mathematics Subject Classification. 11B68; 11S80.

 $\it Key\ words\ and\ phrases.$ A note on ordered Bell numbers and polynomials.

be the algebra of formal power series in the variable t with coefficient \mathbb{C} .

Suppose that \mathbb{P} be the algebra of polynomials in x over \mathbb{C} and we denote the action of linear functional $L \in \mathbb{P}^*$ on polynomial p(x) by $\langle L|p(x) \rangle$.

Let $f(t) = \sum_{k=0}^{\infty} a_k \frac{t^k}{k!} \in \mathcal{F}$. Then we define a linear functional on \mathbb{P} by setting

$$\langle f(t)|x^n \rangle = a_n$$
, for all $n \ge 0$, (see [3 – 13]). (1.5)

For $L \in \mathbb{P}^*$, there is a unique formal power series $f_L(t)$ such that $L = f_L(t)$ as linear functional on \mathbb{P} .

Indeed, if such a formal series $f_L(t)$ exists, then $\langle L|x^n \rangle = \langle f_L(t)|x^n \rangle$,

$$f_L(t) = \sum_{n=0}^{\infty} \langle f_L(t) | x^n \rangle \frac{t^n}{n!} = \sum_{n=0}^{\infty} \langle L | x^n \rangle \frac{t^n}{n!}, \text{ (see [11, 13])}.$$
 (1.6)

The map $L \mapsto f_L(t)$ is a vector space isomorphism from \mathbb{P}^* onto \mathcal{F} . Henceforth, \mathcal{F} will denote both the algebra of formal power series in t and the vector space of all linear functionals on \mathbb{P} , and so an element f(t) of \mathcal{F} will be thought of as both a formal series and a linear functional. We shall call \mathcal{F} the umbral algebra. The umbral calculus is the study of umbral algebra. The order ord(f(t)) of $f(t)(\neq 0) \in \mathcal{F}$ is the smallest positive integer k for which the coefficient of the does not vanish.

For $f(t), g(t) \in \mathcal{F}$, we note that

$$< f(t)q(t)|p(x)> = < f(t)|q(t)p(x)> = <1|f(t)q(t)p(x)>,$$
 (see [13]).

Let $f(t), g(t) \in \mathcal{F}$ with ord(f(t)) = 1 and ord(g(t)) = 0. Then there exists a uniquence sequences $S_n(x)$ such that $\langle g(t)f(t)^k|S_n(x) \rangle = n!\delta_{n,k}$, $(n,k \geq 0)$, where $\delta_{n,k}$ is the Kronecker's symbol and $S_n(x)$ is a polynomial of degree n. The sequences $S_n(x)$ is called Sheffer sequence for (g(t), f(t)) which is denoted by $S_n(x) \sim (g(t), f(t))$, (see [7 – 13]).

It is well known that $S_n(x) \sim (g(t), f(t))$ if and only if

$$\frac{1}{g(\bar{f}(t))}e^{x\bar{f}(t)} = \sum_{n=0}^{\infty} \frac{S_n(x)}{n!}t^n, \quad \text{for all } x \in \mathbb{C},$$
(1.7)

where $\bar{f}(t)$ is the compositional inverse of f(t) with $f(\bar{f}(t)) = \bar{f}(f(t)) = t$, (see [6, 13]). For $f(t) \in \mathcal{F}$ and $p(x) \in \mathbb{P}$, we have

$$f(t) = \sum_{k=0}^{\infty} \langle f(t) | x^k \rangle \frac{t^k}{k!}, \quad p(x) = \sum_{k=0}^{\infty} \langle t^k | p(x) \rangle \frac{x^k}{k!}.$$
 (1.8)

Thus, by (1.8), we get

$$p^{(k)}(0) = \langle t^k | p(x) \rangle = \langle 1 | p^{(k)}(x) \rangle, \tag{1.9}$$

where
$$p^{(k)}(x) = \left(\frac{d}{dx}\right)^k p(x)$$
, (see $[6-9,13]$). By (1.9), we easily get $t^k p(x) = p^{(k)}(x)$, $e^{yt} p(x) = p(x+y)$, $\langle e^{yt} | p(x) \rangle = p(y)$. (1.10)

In this paper, we give some identities and formulas of ordered Bell polynomials and numbers which are derived from umbral calculus.

2. Ordered Bell numbers and polynomials

From (1.2) and (1.7), we note that

$$b_n(x) \sim (2 - e^t, t), \ (n \ge 0).$$
 (2.1)

That is, $b_n(x)$ are Appell sequences for (g(t), t). Let

$$\mathbb{P}_n = \{ p(x) \in \mathbb{C}[x] \mid \deg p(x) \le n \}, \quad (n \ge 0).$$

Then \mathbb{P}_n is the (n+1)-dimensional vector space. For $S_n(x) \sim (g(t),t)$, we have

$$\frac{1}{g(t)}e^{xt} = \sum_{n=0}^{\infty} S_n(x) \frac{t^n}{n!}.$$
 (2.2)

Thus, by (2.2), we get

$$\frac{1}{g(t)}x^n = S_n(x), (n \ge 0).$$

$$\Leftrightarrow S_n(x) \sim (g(t), t).$$
(2.3)

Let us take $g(t) = 2 - e^t$, Then we have

$$\sum_{k=0}^{\infty} \frac{b_k(x)}{k!} t^k = \frac{1}{g(t)} e^{xt} = \frac{1}{2 - e^t} e^{xt}.$$
 (2.4)

Thus, we have

$$\frac{1}{2 - e^t} x^n = b_n(x), \ (n \ge 0).$$
 (2.5)

and

$$tb_n(x) = b'_n(x) = nb_{n-1}(x), \quad (n \ge 1).$$
 (2.6)

Now, we observe that

$$\frac{1}{n+1} \left(b_{n+1}(x+y) - b_{n+1}(x) \right) = \frac{1}{n+1} \sum_{k=1}^{\infty} \binom{n+1}{k} b_{n+1-k}(x) y^{k}$$

$$= \sum_{k=1}^{\infty} \frac{n(n-1) \cdots (n-k+2)}{k!} b_{n+1-k}(x) y^{k}$$

$$= \sum_{k=1}^{\infty} \frac{y^{k}}{k!} t^{k-1} b_{n}(x).$$
(2.7)

From (2.7), we have

$$\int_{x}^{x+y} b_{n}(u)du = \frac{1}{n+1} \Big(b_{n+1}(x+y) - b_{n+1}(x) \Big)
= \sum_{k=1}^{\infty} \frac{1}{k!} y^{k} t^{k-1} b_{n}(x)
= \frac{1}{t} \left(\sum_{k=1}^{n} \binom{n}{k} b_{n-k}(x) y^{k} \right)
= \frac{1}{t} \Big(b_{n}(x+y) - b_{n}(x) \Big)
= \frac{1}{t} (e^{yt} - 1) b_{n}(x), \quad (n \ge 0).$$
(2.8)

Thus, by (2.8), we get

$$b_n(x) = \frac{t}{e^t - 1} \int_x^{x+1} b_n(u) du = \frac{1}{2 - e^t} x^n, \ (n \ge 0).$$
 (2.9)

Since

$$b_n(x) = t\left(\frac{1}{n+1}b_{n+1}(x)\right), \ (n \ge 0).$$
 (2.10)

From (2.10), we have

$$\left\langle \frac{e^{yt} - 1}{t} \middle| b_n(x) \right\rangle = \left\langle e^{yt} - 1 \middle| \frac{1}{n+1} b_{n+1}(x) \right\rangle$$
$$= \int_0^y b_n(u) du.$$

For $r \in \mathbb{N}$, the ordered Bell polynomials of order r are defined by the generating function to be

$$\left(\frac{1}{2-e^t}\right)^r e^{xt} = \sum_{n=0}^{\infty} b_n^{(r)}(x) \frac{t^n}{n!}.$$
 (2.11)

In the special case, $x=0,\,b_n^{(r)}(0)=b_n^{(r)}$ are called the ordered Bell numbers with order r.

From (1.7) and (2.11), we note that

$$b_n^{(r)}(x) \sim ((2 - e^t)^r, t), (n \ge 0).$$
 (2.12)

Thus, by (2.12), we see that $b_n^{(r)}(x)$ is also Appell sequence. It is easy to show that

$$b_n^{(r)}(x) = \sum_{l=0}^n \binom{n}{r} b_{n-l}^{(r)} x^l, \ (n \ge 0), \tag{2.13}$$

and

$$b_n^{(r)} = \sum_{l_1 + \dots + l_r = n} {n \choose l_1, l_2, \dots, l_r} b_{l_1} b_{l_2} \dots b_{l_r}, \tag{2.14}$$

where $\binom{n}{l_1, l_2, \cdots, l_r} = \frac{n!}{l_1! l_2! \cdots l_r!}$. From (2.13), we note that

$$\frac{d}{dx}b_n^{(r)}(x) = nb_{n-1}^{(r)}(x), \ (n \in \mathbb{N}).$$
 (2.15)

By (2.15), we get

$$\int_{x}^{x+y} b_{n}^{(r)}(u) du = \frac{1}{n+1} \left\{ b_{n+1}^{(r)}(x+y) - b_{n+1}^{(r)}(x) \right\}
= \sum_{k=1}^{\infty} \frac{y^{k}}{k!} t^{k-1} b_{k}(x) = \left(\frac{e^{yt} - 1}{t} \right) b_{n}^{(r)}(x).$$
(2.16)

By (2.11), we easily get

$$-\left(\frac{1}{2-e^t}\right)^r e^{(x+1)t} + 2\left(\frac{1}{2-e^t}\right)^r e^{xt} = \left(\frac{1}{2-e^t}\right)^{r-1} e^{xt}.$$
 (2.17)

Thus, we have

$$\sum_{n=0}^{\infty} \left(2b_n^{(r)}(x) - b_n^{(r)}(x+1) \right) \frac{t^n}{n!} = \sum_{n=0}^{\infty} b_n^{(r-1)}(x) \frac{t^n}{n!}.$$
 (2.18)

By comparing the coefficients on the both sides of (2.18), we get

$$2b_n^{(r)}(x) - b_n^{(r+1)}(x) = b_n^{(r-1)}(x), \ (r \in \mathbb{N}, \ n \ge 0). \tag{2.19}$$

Now, we observe that

$$\sum_{n=0}^{\infty} b_n^{(r)}(x) \frac{t^n}{n!} = \left(\frac{1}{2 - e^t}\right)^r e^{xt} = \left(\frac{1}{2 - e^t}\right)^{r-1} \left(\frac{1}{2 - e^t}\right) e^{xt}$$

$$= \left(\sum_{l=0}^{\infty} b_l^{(r-1)}(x) \frac{t^l}{l!}\right) \left(\sum_{m=0}^{\infty} b_m \frac{t^m}{m!}\right)$$

$$= \sum_{n=0}^{\infty} \left(\sum_{l=0}^{n} \binom{n}{l} b_l^{(r-1)}(x) b_{n-l}\right) \frac{t^n}{n!}.$$
(2.20)

Thus, by (2.20), we get

$$b_n^{(r)}(x) = \sum_{l=0}^n \binom{n}{l} b_l^{(r-1)}(x) b_{n-l}, \ (n \ge 0).$$
 (2.21)

From (2.19) and (2.21), we can derive the following equation:

$$\frac{e^{t} - 1}{t} b_{n}^{(r)}(x) = \int_{x}^{x+1} b_{n}^{(r)}(u) du$$

$$= \frac{1}{n+1} \left\{ b_{n+1}^{(r)}(x+1) - b_{n+1}^{(r)}(x) \right\}$$

$$= \frac{1}{n+1} \left\{ b_{n+1}^{(r)}(x+1) - 2b_{n+1}^{(r)}(x) + b_{n+1}^{(r)}(x) \right\}$$

$$= \frac{1}{n+1} \left\{ b_{n+1}^{(r)}(x) - b_{n+1}^{(r-1)}(x) \right\}$$

$$= \frac{1}{n+1} \sum_{l=0}^{n} \binom{n+1}{l} b_{l}^{(r-1)}(x) b_{n+1-l}.$$
(2.22)

By (2.22), we get

$$\frac{e^t - 1}{t} b_n^{(r)}(x) = \frac{1}{n+1} \sum_{l=0}^n \sum_{m=0}^l \binom{n+1}{l} \binom{l}{m} b_{n+1-l} b_{l-m}^{(r)} x^m.$$
 (2.23)

From (2.23), we note that

$$b_{n}^{(r)}(x) = \frac{1}{n+1} \sum_{l=0}^{n} \sum_{m=0}^{l} {n+1 \choose l} {l \choose m} b_{n+1-l} b_{l-m}^{(r)} \frac{t}{e^{t}-1} x^{m}$$

$$= \frac{1}{n+1} \sum_{l=0}^{n} \sum_{m=0}^{l} {n+1 \choose l} {l \choose m} b_{n+1-l} b_{l-m}^{(r)} B_{m}(x),$$
(2.24)

where $B_m(x)$ are ordinary Bernoulli polynomials which are given by the generating function to be

$$\frac{t}{e^t - 1}e^{xt} = \sum_{n=0}^{\infty} B_n(x)\frac{t^n}{n!}.$$

Note that

$$\frac{e^{t} - 1}{t} b_{n}^{(r)}(x) = \frac{1}{n+1} \left\{ b_{n+1}^{(r)}(x) - b_{n+1}^{(r-1)}(x) \right\}
= \frac{1}{n+1} \sum_{l=0}^{n} \binom{n+1}{l} \left(b_{l}^{(r)} - b_{l}^{(r-1)} \right) x^{n+1-l}$$
(2.25)

Thus, by (2.25), we get

$$b_n^{(r)}(x) = \frac{1}{n+1} \sum_{l=0}^{n+1} {n+1 \choose l} \left(b_l^{(r)} - b_l^{(r-1)} \right) \frac{t}{e^t - 1} x^{n+1-l}$$

$$= \frac{1}{n+1} \sum_{l=0}^{n+1} {n+1 \choose l} \left(b_l^{(r)} - b_l^{(r-1)} \right) B_{n+1-l}(x).$$
(2.26)

Since

$$\left\langle \frac{e^{yt} - 1}{t} \mid b_n^{(r)}(x) \right\rangle = \left\langle e^{yt} - 1 \mid \frac{1}{n+1} b_{n+1}^{(r)}(x) \right\rangle$$
$$= \int_0^y b_n^{(r)}(u) du. \tag{2.27}$$

In the special case, y = 1, we have

$$\left\langle \frac{e^{t} - 1}{t} \mid b_{n}^{(r)}(x) \right\rangle = \int_{0}^{1} b_{n}^{(r)}(u) du$$

$$= \frac{1}{n+1} \sum_{l=0}^{n} {n+1 \choose l} b_{l}^{(r-1)} b_{n+1-l}.$$
(2.28)

It is not difficult to show that

$$\left\langle \left(\frac{1}{2-e^t}\right)^r \mid x^n \right\rangle = \sum_{n=l_1+\dots+l_r} \binom{n}{l_1,\dots,l_r} \left\langle \frac{1}{2-e^t} \mid x^{l_1} \right\rangle \times \dots \times \left\langle \frac{1}{2-e^t} \mid x^{l_r} \right\rangle, \tag{2.29}$$

and

$$\left\langle \left(\frac{1}{2-e^t}\right)^r \mid x^n \right\rangle = b_n^{(r)}, \text{ and } \left\langle \left(\frac{1}{2-e^t}\right) \mid x^n \right\rangle = b_n, \ (n \ge 0).$$
 (2.30)

By (2.29) and (2.30), we get

$$\sum_{n=l_1+\dots+l_n} \binom{n}{l_1,\dots,l_r} b_{l_1} b_{l_2} \dots b_{l_r} = b_n^{(r)}, \ (n \ge 0).$$
 (2.31)

Let us take $p(x) \in \mathbb{P}_n$, $(n \ge 0)$, with

$$p(x) = \sum_{k=0}^{n} C_k b_k(x).$$
 (2.32)

Then, we have

$$\langle (2 - e^t)t^k \mid b_n(x) \rangle = n! \delta_{n,k}, \ (n, k \ge 0),$$
 (2.33)

and

$$\langle (2 - e^t)t^k \mid p(x) \rangle = \sum_{l=0}^n C_l \langle (2 - e^t)t^k \mid b_l(x) \rangle$$

$$= \sum_{l=0}^n C_l \delta_{n,l} l! = k! C_k.$$
(2.34)

Thus, by (2.34), we get

$$C_k = \frac{1}{k!} \langle (2 - e^t) t^k \mid p(x) \rangle = \frac{1}{k!} \langle (2 - e^t) t^k \mid p^{(k)}(x) \rangle.$$
 (2.35)

From (2.32) and (2.35), we obtain the following equation.

For $p(x) = b_n^{(r)}(x) \in \mathbb{P}_n$, we have

$$p(x) = \sum_{k=0}^{n} C_k b_k(x), \qquad (2.36)$$

where

$$C_{k} = \frac{1}{k!} \langle 2 - e^{t} \mid p^{(k)}(x) \rangle = \binom{n}{k} \langle 2 - e^{t} \mid b_{n-k}^{(r)}(x) \rangle$$

$$= \binom{n}{k} (2b_{n-k}^{(r)} - b_{n-k}^{(r)}(1)) = \binom{n}{k} b_{n-k}^{(r-1)}.$$
(2.37)

Hence, by (2.36) and (2.37), we get

$$b_n^{(r)}(x) = \sum_{k=0}^{n} \binom{n}{k} b_{n-k}^{(r-1)} b_k(x), \ (n \ge 0).$$
 (2.38)

From $b_n^{(r)}(x) \sim ((2-e^t)^r, t)$, we have

$$\langle (2 - e^t)^r t^k \mid b_n^{(r)}(x) \rangle = n! \delta_{n,k}, \ (n, k \ge 0).$$
 (2.39)

For $p(x) = \sum_{k=0}^{n} C_k^{(r)} b_k^{(r)}(x) \in \mathbb{P}_n$, we have

$$\langle (2 - e^{t})^{r} t^{k} \mid p(x) \rangle = \sum_{l=0}^{n} C_{l}^{(r)} \langle (2 - e^{t})^{r} t^{k} \mid b_{k}^{(r)}(x) \rangle$$

$$= \sum_{l=0}^{n} C_{l}^{(r)} l! \delta_{l,k} = k! C_{k}^{(r)}, \ (k \ge 0).$$
(2.40)

Thus, by (2.40), we get

$$C_k^{(r)} = \frac{1}{k!} \langle (2 - e^t)^r t^k \mid p(x) \rangle = \frac{1}{k!} \langle (2 - e^t)^r \mid p^{(k)}(x) \rangle.$$
 (2.41)

Let us take $p(x) = b_n(x)$ with

$$b_n(x) = p(x) = \sum_{k=0}^{n} C_k^{(r)} b_k^{(r)}(x).$$
 (2.42)

Then, we have

$$C_{k}^{(r)} = \frac{1}{k!} \langle (2 - e^{t})^{r} \mid p^{(k)}(x) \rangle = \binom{n}{k} \langle (2 - e^{t})^{r} \mid b_{n-k}(x) \rangle$$

$$= \binom{n}{k} \sum_{j=0}^{r} \binom{r}{j} (-1)^{j} 2^{r-j} \langle e^{jt} | b_{n-k}(x) \rangle$$

$$= \binom{n}{k} \sum_{j=0}^{r} \binom{r}{j} (-1)^{j} 2^{r-j} b_{n-k}(j).$$
(2.43)

By (2.42) and (2.43), we get

$$b_n(x) = \sum_{k=0}^n \left(\sum_{j=0}^r \binom{n}{k} \binom{r}{j} (-1)^j 2^{r-j} b_{n-k}(j) \right) b_k^{(r)}(x). \tag{2.44}$$

References

- A. Cayley, On the analytical forms called trees, second part, Philosophical Magazine, Series IV, 18 (121) (1859), 374–378.
- L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, D. Reidel Publishing Co., 1974 p. 228.
- D. S. Kim, T. Kim, H. I. Kwon, T. Mansour, Powers under umbral composition and degeneration for Sheffer sequences, Adv. Difference Equ. 2016 2016:66, 11 pp
- D. S. Kim, T. Kim, H. I. Kwon, T. Mansour, Degenerate poly-Bernoulli polynomials with umbral calculus viewpoint, J. Inequal. Appl. 2015 2015:228, 13 pp
- D. S. Kim, T. Kim, T. Komatsu, J.-J. Seo, An umbral calculus approach to poly-Cauchy polynomials with a q parameter, J. Comput. Anal. Appl. 18 (2015), no. 5, 762–792.
- D. S. Kim, T. Kim, Umbral calculus associated with Bernoulli polynomials, J. Number Theory. 147 (2015), 871–882.

- 7. T. Kim, D. S. Kim, Some Formulas of ordered Bell numbers and polynomials arising from umbral calculus (communicated)
- 8. T. Kim, T. Mansour, S.-H. Lee, Apostol-Euler polynomials arising from umbral calculus, Adv. Difference Equ. 2013 2013:301, 7 pp.
- T. Kim, T. Mansour, Umbral calculus associated with Frobenius-type Eulerian polynomials, Russ. J. Math. Phys. 21 (2014), no. 4, 484–493.
- T. Kim, D. S. Kim, D. V. Dolgy, J.-J. Seo, Bernoulli polynomials of the second kind and their identities arising from umbral calculus, J. Nonlinear Sci. Appl. 9 (2016), no. 3, 860–869.
- T. Kim, D. S. Kim, T. Mansour, S.-H. Rim, M. Schork, Umbral calculus and Sheffer sequences of polynomials, J. Math. Phys. 54 (2013), no. 8, 083504.
- T. Kim, Identities involving Laguerre polynomials derived from umbral calculus, Russ. J. Math. Phys. 21 (2014), no. 1, 36–45.
- S. Roman, The umbral calculus, Pure and Applied Mathematics, vol. 111, Academic Press, New York, 1984.