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A NOTE ON ORDERED BELL NUMBERS AND
POLYNOMIALS.

TAEKYUN KIM

ABSTRACT. In this paper, we study ordered Bell numbers and polynomials
and we give some new identities of these numbers and polynomials arising
from umbral calculus.

1. Introduction

The ordered Bell numbers are defined by the generating function to be
1 e tn
2_et Zobnm7 (see [1,2]). (1.1)
n=

Now, we consider the ordered Bell polynomials which are given by the generating
function to be

1 e tn
ot t = an(x)m, (see [7]). (1.2)
n=0 :
Note that
oo oo n
t" 1 - n t"
an(.l,)m = melt = Z ( (l>bn_l.’L'l> m (13)
n=0 : n=0 \I1=0 '

By (1.3), we get

b () = (’l’)bzx”-’=z(’;)bn_lxl, (n>0). (1.4
=0

=0
oo ik
F = {f(f) = Zak’ﬁ ay € (C}
k=0 '
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be the algebra of formal power series in the variable ¢ with coefficient C.
Suppose that P be the algebra of polynomials in 2 over C and we denote the
action of linear functional L € P* on polynomial p(z) by < L|p(x) >.

Let f(t) = > pep ak% € F. Then we define a linear functional on P by setting
< ft)|z" >=an, foralln >0, (see[3—13]). (1.5)

For L € P*, there is a unique formal power series fr(t) such that L = fL(¢) as
linear functional on P.

Indeed, if such a formal series fr(t) exists, then < L|a" >=< fr(t)]z" >,
and

fo(t) = Z < fo(t))z" > — Z < Llz" > —, (see[11,13)).  (1.6)
n=0

The map L — f1(t) is a vector space isomorphism from P* onto F. Henceforth,
F will denote both the algebra of formal power series in ¢ and the vector space
of all linear functionals on P, and so an element f(t) of F will be thought of as
both a formal series and a linear functional. We shall call F the umbral algebra.
The umbral calculus is the study of umbral algebra. The order ord(f(t)) of
f(t)( 0) € F is the smallest positive integer k for which the coefficient of the

does not vanish.
For f(t),g(t) € F, we note that

< fWg@®)lp(z) >=< f(D)lg(t)p(x) >=<1|f()g(t)p(x) >, (see [13]).

Let f(t),g(t) € F with ord(f(t)) = 1 and ord(g(t)) = 0. Then there exists a
uniquence sequences S, (x) such that < g(t)f(t)*|S,(z) >= nldpk, (n,k > 0),
where 0, is the Kronecker’s symbol and S, (x) is a polynomial of degree n.
The sequences Sy, (z) is called Sheffer sequence for (g(t), f(t)) which is denoted

by Sn(x) ~ (g(t), f(1)), (see [7 — 13]).
It is well known that S,,(x) ~ (g(t), f(¢)) if and only if

1 ; S, (x)
zf(t) — n o
— ¢ g —Zt for all x € C, 1.7
g(f(t) =0 n! 7

where f(t) is the compositional inverse of f(t) with f(f(t)) = f(f(t)) =t, (see [6,13]).
For f(t) € F and p(z) € P, we have

o0 k
x
Z <Ol > 5L ) =Y <t > T (1)
k=0
Thus, by (1.8), we get
p®(0) =< t*lp(z) >=< 1p™ () >, (1.9)
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where p*) (z) = (%)kp(m), (see [6 — 9,13]). By (1.9), we easily get

t*p(z) = p*)(2), e¥'p(z) = p(z +y), < e’ |p(z) >=p(y). (1.10)

In this paper, we give some identities and formulas of ordered Bell polynomials
and numbers which are derived from umbral calculus.

2. Ordered Bell numbers and polynomials

From (1.2) and (1.7), we note that
bo(z) ~ (2 — €', t), (n>0). (2.1)
That is, b, () are Appell sequences for (g(t),t). Let
P, = {p(x) € Clz] | degp(z) <n}, (n>0).

Then P, is the (n + 1)-dimensional vector space. For S, (z) ~ (g(t),t), we have

1 . Z L\
g (t) ‘ n=0 Sn( ) n! ’ (22)
Thus, by (2.2), we get
—1 " = ), (n

& Sp(x) ~ (9(t),1).

Let us take g(t) = 2 — !, Then we have

S bk(“’) k _ 1 ot __ 1 xt
M A (24)
Thus, we have
1 n
5l = bn(z), (n>0). (2.5)

and

thy(z) = b, (z) = nbp_1(x), (n>1). (2.6)
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Now, we observe that

) (bm—l(l‘ +y) — bn+1($)) _

From (2.7), we have

I < /n+1 &
bpt1—
T (et

77
“nn—1)--(n—k+?2
y e b1 a@)y
k=1 ’
© K
y _

Il
=| =
<
o~
~+
5
L
o
3
—
8
N

1. 2 — et
Since
1
bn(l') =t <n+ 1bn+1(1‘)> s (n 2 O)

From (2.10), we have

evt — 1 1

P— 2\ = (¥t _ ) I

() = (o )

= /0 b (u)du,

For r € N, the ordered Bell polynomials of order r are defined by the generating

1 " xt S (r) "
(2—6”) e"’:an (m)m
n=0

function to be

2.7)

(2.8)

(2.9)

(2.10)

(2.11)
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In the special case, x = 0, bsf)(O) = bg) are called the ordered Bell numbers
with order r.

From (1.7) and (2.11), we note that
b (@) ~ (2= €),t), (n>0). (2.12)

Thus, by (2.12), we see that b(r)( ) is also Appell sequence. It is easy to show
that

n
n .
b () = ; <7> bgﬁ,m , (n>0), (2.13)
and
b{r) = Z " bbb
no Lo, 1y 1, Y1 i (2.14)
li++l.=n

where (11,12?~ l) ll,lz,—l, From (2.13), we note that

b(’)(m) = nb"

n—1

(2), (n€N). (2.15)

By (2.15), we get

Tty i 1 ,
[ - JQL<+w—dH«ﬁ

n -+
o " k-1 e =1\
Zk_ bk < t >bn (L)

k=1

(2.16)

By (2.11), we easily get

1 " (z+1)t 1 ' xt 1 - xt 217
“\g=a) € +2 5 ) ¢ =la=a e (2.17)

Thus, we have

i (2b§[)(' )= b0 (w4 1) ) Zb(’ D (a (2.18)

n=0

By comparing the coefficients on the both sides of (2.18), we get

20 () — bV (z) = bV (x), (r €N, n>0). (2.19)
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Now, we observe that

oo

t’ll
E (M) () =

n=0

1 " emt _ 1 ot 1 emt

2—¢t) T \2—¢t 2 — et

oo l e m
_ (-1, & r
N <Zo b (x)l!> (WLZ:Obmm!>
Y A VAW t"

- Z (Z (l>bl (x)bnl> .

Thus, by (2.20), we get

b (@) =

NgE

(7;) b (@)bn_y, (n>0).

=0

From (2.19) and (2.21), we can derive the following equation:

el —1 oFl
— b (z) = / b (u)du
x

t
L o (r)
= n + 1 {bn+1(" 1) — bn+1(")}
=n+1%m4 +1) = 26,7, (2) + 7 ()}
= n+1 - bg+1l)( )}

" /n+1 e
1 ( l )bz( (@)bnsr1.
=0

By (2.22), we get

t n !
€ T n+ 1 r ’"L
= 5 () (e

l 0 m=0

From (2.23), we note that
J n4+1\ /1 t
(r) — m
bn (I) n+1 ;0 Z ( l ) <m> bn+1 lbl met 11‘
n l
1 n+1 l )
T+l Z Z ( l ) (m) b"+1_lbl_mBm($)’

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)
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where B,,(z) are ordinary Bernoulli polynomials which are given by the gener-

ating function to be

t
et —
Note that
et —1 1
oy M) = ——
t " (z) n+1

o) (@) — 05 (2)}

RN 1 r r— _
:n+12(n7 >(b§)~bl( 1))x"+1 I

=0

Thus, by (2.25), we get

n+1

00 = 73

=0

l

et —

1 r r— _
n+ )(bz()—bz( 1)) tlxn+1 !

n+1
“r (7))o
l

Since

In the special case, y = 1, we have

(£ o)

It is not difficult to show that
(=) 1)=&

n=ly+-+1,

and

(a) 17)=

1 " n+ 1\ e
:n+12( I )bl( T
=0

(ll,'?,lr><ﬁ ‘$11>X"'X<ﬁ

and < (ﬁ) | £"> = b, (n>0).

(2.25)

(2.26)

(2.27)

(2.28)

l

(2.29)

(2.30)
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By (2.29) and (2.30), we get

3 ( " >bllbl2-~-bl,_=b§l’°), (n>0).
l17"'7l7’

n=l1+-+Il,
Let us take p(x) € Py, (n > 0), with

p(z) = Z Crbi(x).
k=0
Then, we have
<(2 — et)tk ’ bn(w)> =nloy i, (n,k>0),

and

(@=et" [ pla)) =Y Ci{(2— et | bi(x))
=0

= Cibpl! = KICy.
=0

Thus, by (2.34), we get

1 1 . .
Cr = E<(2 —eh)tk | p(x)) = E<(2 —et)tk ‘ p(k)(w)>.
From (2.32) and (2.35), we obtain the following equation.
For p(z) = by (z) € P,,, we have

p(z) = Ciby(x),
k=0

where

n

Cyp = %<2 — et ‘ p(k)(x)> _ <k> <2 et ‘ bELT,)k(x»

n r r n\  (r—
= () o = ()i
Hence, by (2.36) and (2.37), we get
.
b () =Y <k> bS5 bk(), (n > 0).
k=0

From b (z) ~ ((2 —€")",t), we have

2 — )R | B (1)) = oy i, (n, k> 0).

<( n s

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)
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For p(z) =Y 1_, C,gr)bg)(:l;) € P, we have
n

(2= et | pa)) =3O (2 - e)th | b ()
=0
=S¢ = kG, (k> 0).
=0
Thus, by (2.40), we get
o = 2

Let us take p(z) = by, (z) with
n

bu(z) = pla) = 3_ C78 (@),
Then, we have

o) =

I
/N /N =
S > 3
~
JIS I

By (2.42) and (2.43), we get

@ =3 (S (1) (1) vz ) 0w,
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